DOCUMENTED CHROMOSOME NUMBERS OF PLANTS
(See Madroño 9: 257-258. 1948)

[^0]| Species | Number | Counted by | Collection | Locality |
| :---: | :---: | :---: | :---: | :---: |
| frutescens
 (L.) DC. | $2 \mathrm{n}=28$ | R. T. Neher IND | $\begin{aligned} & \text { Heiser } 3205 \\ & \text { IND } \end{aligned}$ | Manatee County, Florida |
| Simsia grandiflora Benth. | $\mathrm{n}=17$ | C. B. Heiser | $\begin{aligned} & \text { Heiser } R 7 \\ & \text { IND } \end{aligned}$ | San Salvador, Salvador |
| polycephala Benth. | $\mathrm{n}=17$ | C. B. Heiser IND | $\begin{aligned} & \text { Heiser } R 5 \\ & \text { IND } \end{aligned}$ | Antigua, Guatemala |
| Thelesperma intermedium Rydb. | $\mathrm{n}=8$ | A. M. Torres UNM | Torres 12
 UNM | Bernalillo County, New Mexico |
| longipes Gray | $\mathrm{n}=10$ | A. M. Torres UNM | Torres 18 UNM | Otero County,
 New Mexico |
| megapotamicum
 (Spreng.) Kuntze | $\mathrm{n}=11$ | A. M. Torres UNM | Torres 10 UNM | Socorro County, New Mexico |
| subnudum Gray | $\mathrm{n}=12$ | A. M. Torres UNM | Torres 23 UNM | San Juan County, New Mexico |

APOMIXIS IN THE GRAMINEAE. TRIBE ANDROPOGONEAE: HETEROPOGON CONTORTUS

W. H. P. Emery and W. V. Brown

Heteropogon contortus (L.) Beauv. ex Roem. \& Schult. consists of a relatively uniform series of populations with an extensive native range throughout most of the tropical and sub-tropical grassland regions of the world. In parts of the Hawaiian Islands, Australia, Indo-Malaya, India, Asia Minor, Africa, Europe, and the Americas it forms an important part of the range forage. The species is both palatable and nutritious, but when mature the plants produce fertile spikelets which have a sharply pointed callus and a stout hairy awn. These spikelets may penetrate the skin or lining of the digestive tract (Pammel, 1911), causing severe irritation and infection. They may even affect the general health of grazing animals (Chippindall, 1954).

Previous cytological studies of H. contortus from various parts of the world have shown that many of the populations which comprise this species are characterized by highly irregular meiotic divisions. Gould (1956) reported that some irregularities were observed in meiotic divisions of the pollen mother cells (PMC's) in six collections from Texas and northern Mexico. Mehra (1954) examined six collections from India and reported varying numbers of univalent, bivalent, trivalent, and quadrivalent configurations in the microsporocytes of each collection. On the other hand, Celarier and Harlan (1953) examined collections from Tanganyika, India, Australia, and Madagascar and noted a high degree of irregularity in the

[^0]: * Prepared slide available.
 ${ }^{1}$ Symbols for institutions are those listed by Lanjouw and Stafleu, Index Herbariorum, Part I. Third Edition, 1956, Utrecht.

